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PREFACE

I This report documents a series of studies investigating map clutter as a source
of distortion in estimates of distance. The research was performed between Novem-
ber 1977 and February 1979 and was supported by the office of the Director of
Pi~~ni eIánd Training Research Programs~ Psychological Sciences Division, Office
of Naval Research. This research is partof an ongoing program of study on prob-L. -~ lems in the general area of spatial and locational knowledge processing.

4 The research reported herein was undertaken to investigate the process by
which people estimate distances from learned maps and to assess potential distor-
tions in those estimates. In the experiments described here, map clutter systemati-
cally biased people’s distance estimates; thus this report should interest persons
concerned with map design and with instruction in map use.
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SUMMARY

The estimation of the distance between two points is frequently an important
component of pbrnning, navigation, and decisionmaking tasks. One may make such
estimates using either external, hard-copy maps or an internal, cognitive map. In
either case, the estimates may be influenced by a variety of characteristics in
addition to the true distance.

In this study, four experiments investigated map clutter as a source of distor-
- 

- tion in subjects’ estimates of distance. In Experiments 1 and 2, subjects estimated
distances between pairs of points on a memorized map. In Experiment I, they
learned relative distances among cities incidentally, in Experiment 2, they learned
these distances intentionally. In both experiments, estimates increased as a linear
function of the number of intervening points along the judged path. In Experiment
3, subjects estimated distances while viewing the map. With this procedure, the
efi’ect of clutter was reduced but not eliminated. In Experiment 4, the clutter effect
was demonstrated using subjects’ pre-experimental knowledge of US. geography.
Psychophysical power functions relating true to estimated distance provided a good
fit to both memory and perception data. These results suggest an analogy between
perceptual and memorial processes of distance estimation. The estimation model
providing the best fit to the data assumed that subjects perceptually scan a route
(or a mental image of a route) from the starting point to the destination point and
use scan duration to determine route distance.
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L INTRODUCTION

The principle that a filled distance appears longer than an empty distance is one
of the oldest to have received formal recognition as a perceptual law. Ptolemy
invoked this princip le around 150 A.D. to explain the illusion that the moon appears
larger on the horizon than it does when higher in the sky. Since Ptolemy ’s time,
a standard explanation of this illusion has assumed that the depth cues (i.e., inter-
vening objects) between the viewer and the horizontal moon make it appear f arther
away than it appears to be at its zenith. However , in both cases the moon subtends
the same retinal angle . Since a far object that subtends the same angle as a near
object must be larger than the near object, the moon appears to be larger on the
horizon .

Some of the earliest research in experimental psychology addressed this “clut-
ter ” phenomenon. Oppel (1855) showed that a row of dots appears to be longer than
the same empty distance between two dots, a fact that Hering (1861) attempted to
explain in his first important scientific publication. During the past 100 years, a
number of studies using both children and adults have documented this illusion
(Spiegel, 1937; Gaud reau , Lavoie, & Delorme , 1963; Spitz , Goett ler , & Diveley,
1970; Pressey, 1974).

One historically prominent theory of perception explaining this and other visu-
al illusions is the “eye movement ” theory (Woodworth , 1938). This theory assumes
that the impression of length is obtained by moving the eye along a line from the
starting point to the terminus. The presence of dots along the judged path presum-
ably causes temporary fixations or other perturbations of the perceptual scan.
Therefore the distance , as reflected by the time required to perform the scan, is
longer for a cluttered than for an uncluttered path .

An analog of this scanning process may occur when a person estimates dis-
tances between two geographic locations based on an internal , memorized map. For
example , suppose one were estimating the distance from Boston to Washington,
D.C. If the estimator knew the locations of east coast cities reasonably well but had
not explicitly learned intercity distances , he or she might imagine a map of the
route from Boston to Washington through New York , Newark , Philadelphia , and
Baltimore . The presence of these major cities along the route would constitute
clutter similar to that produced by a row of dots on a piece of paper. Thus , if the
estimator scanned across a mental image of the map, the clutter along the route
might increase the subjective impression of the distance. If this were the case, the
cluttered route between Boston and Washington should be judged longer than the
same true distance estimated along an uncluttered path (e.g., from Boston to Buffa-
lo).

This analogy assumes a similarity between behavioral data obtained from
perceptual tasks and data from memorial tasks. Such similarities have been ob-
tained for a variety of tasks in which subjects make distan ce judgments about
stimuli with spatial properties. Studies of perceptual scanning and distance estima-
tion have demonstrated that perceived distance is influenced both by actual dis-
tance and by clutter. For example , Kosslyn, Pick , and Fa riello (1974) found that
both children ’s and adults ’ memory judgments of the distance between two objects
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2

in a room increased when barriers were interposed between the objects. Baum and
Jonides (1977) and Hartley (1977) found that the time required to estimate the
distance between two points increased linearly with the actual distance. Similar
effects have been obtained on subjects performing these tasks using memorized
information . Studies of subjects’ use of visual imagery have demonstrated that the
time to scan across a visual image increases linearly with scan distance and with
the number of objects on the scanned path (Kosslyn , 1973, 1978; Kosslyn , Ball, &
Reiser, 1978). Further , Baum and Jon ides (1977) observed that the time required
to compare two distances decreases with the magnitude of the difference between
the distances on both perceptual and memorial tasks. Other studies have shown
that estimates of distance and line length based on memory are related to true
distance by psychophysical power functions similar to those obtained in perceptual
experiments (Kerst & Howard , 1978; Moyer et al., 1978). Finally, numerous studies
have demonstrated correspondences between perceptual and memorial perfor-
mance data on other tasks that utilize spatial stimuli (Cooper , 1976; Finke &
Schmidt, 1977, 1978; Kosslyn, 1973, 1975; Kosslyn & Pomerantz , 1977; Moyer , 1973;
Podgorny & Shepard , 1978; Shepard , 1978; Shepard & Podgorny, 1978).

These results support the conclusion that the memory representation activated
to perform these spatial tasks has much in common with the perceptual experiences
of the objects themselves. In particular, it has been argued that memory represen-
tations , like percept s, can have continuously varying analog properties that accu-
rately reflect the objects they represent (Holyoak , 1977; Kosslyn, 1973, 1975, 1978;
Kosslyn & Pomerantz , 1977; Shepard , 1978; Shepard & Podgorny, 1978). Typically,
such representations have been described as visual images that can be generated
and manipulated in memory (Kosslyn & Pomerantz , 1977; Kosslyn & Shwartz ,
1977). Such imaginal representations are spatial in the sense that they can be
mapped into a coordinate system in which interpoin t spatial relations preserve the
topographic properties of the real objects.

Previous research has suggested that people can learn maps and retrieve infor-
mation from them using visual imagery (Kosslyn et al., 1978; Thorndyke & Stasz,
1979). In the experiments of the present study, subjects estimated distances be-
tween points on memorized maps. The routes between the points contained varying
numbers of intervening points. If’ the process of estimating distances on a memo-
rized map is similar to that of perceptual magnitude estimation , then the presence
of intervening points on the judged route should influence distance estimates. That
is, increasing the amount of clutter on the judged route should increase subjects ’
estimates of the route distance .

This report investigates the “clutter hypothesis. ” Four experiments are de-
scribed which establish the influence of clutter on people ’s judg ments of map dis-
tance. Experiments 1 and 2 demonstrate this effect for estimates made from memo-
rized , fictitious maps. In Experiment 3, the same result is obtained when subject s
view the map while performing their estimates. In Experiment 4, the clutter effect
is replicated for estimates based on the subjects’ pre-experimental knowledge of
intercity distances in the United States. Then , a variety of models are constructed
of the processes by which subjects arrive at their distance estimates. These models
are evaluated comparatively by fitting them to the experimental data. Finally, the
relationshi p of these data and models to experiments in temporal interval estima-
tion is discussed .



II. DESCRIPTION OF EXPERIMENT S

EXPERIMENT I

Numerous studies in environmental psychology have demonstrated that envi-
roninent.al experiences in a given locale influence a person’s perception of point-to-
point distances (Golledge, Briggs, & Demko, 1969; Stea, 1969; Lee, 1970; Lowrey,
1973; Briggs, 1973; Lundberg, 1973; Cadwallader, 1976). These environmental influ-
ences include the relative attractiveness of locations as destinations, their central-
ity (i.e., their proximity to frequently visited areas), the familiarity of the paths
connecting the locations, the direction of the paths (toward or away from central
locations), and the length of time the person has resided in the locale. To isolate the
effects of map clutter from these other variables, artificial map materials were used
in the first three experiments of this study.

In Experiment 1, subjects initially learned a map of a fictitious road network
in one of two instructional conditions. Both conditions required the subjects to learn
spatial-order information about the cities on the map and the roads on which the
cities were located but did not require them to learn precise locations of cities or
explicit distances between them. Thus, subjects would acquire any knowledge of
distances between cities incidentally. This procedure presumably approximated the
manner in which people typically acquire real-world distance knowledge.

Method

Materials. A road map was constructed of a fictitious county containing 21
cities (see Fig. 1). The scale of the map was 1 inch to 50 miles. All intercity distances
were multiples of 25 miles, and the minimum distance between any two cities was
25 miles. The route between any two cities could be described by the distance
between them, the number of cities along the route (clutter), and the number of
turns required along the route. Because the map was not designed specifically for
the present experiment, not every value of clutter was represented at each route
distance.

Subjects. Twenty-two UCLA undergraduates participated in the experiment
to satisfy a course requirement.

Procedure. The subjects were divided randomly into two groups, the Map
group and the Neighbors group, each having eleven subjects. Subjects were tested
in subgroups of up to four people, but the Maps and Neighbors groups were tested
separately. Subjects in the Map group were instructed to study the map so that they
would be able to draw the road network and place the cities on it. Subjects in the
Neighbors group were instructed to learn the relative city locations in such a way
that they would be able to recall the immediate neighbors of each city along the
roads to the north , east, south, and west. For example, Norwalk’s neighbors were
Sidney on the north, Imperial on the south, and no neighbors on the east or west.
Only ordinal information about the location of the cities on the roads was required
to perform this task successfully.

The subjects were then given a series of four study-test trials. On each trial, the
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Utica Lewis laylo.

Howa ’

Jackson

But ler Sidney Meadow
S 5 • ~~~Ottawa

Grant Elg in

Norwalk ’

Imperial

Rice

Quincy Cedar Polk Dodge. S
Freeburg Kennedy

N 1 Adams

W u -I E 
________ _________$ I.

s Scale

Fig. 1.—The map learned by subjects in Experiment 1

subject first studied the map, which was displayed on a screen using an overhead
projector, for 2 minutes. Subjects were not explicitly instructed to attend to the
scale information on the map. At the end of the 2 minutes, the map was removed
and the subjects were tested on their knowledge. Subjects in the Map group at-
tempted to draw the map. Subjects in the Neighbors group were given a sheet of
paper on which the cities were listed in alphabetical order. For each city, they
attempted to recall the neighbors in each direction. Unlimited tune was permitted
for completion of these tasks. Afler the fourth trial, subjects in both groups per-
formed both the map-drawing and neighbor-recalling tasks. Then all subjects were
given a sheet of paper with 58 city pairs listed on it and were instructed to estimate,
for each pair, the distance along the shortest route (series of roads) connecting the
pair. The true distance between cities in a pair ranged from 25 miles to 150 miles,
in increments of 25 miles. The number of intervening cities between test pairs
(clutter) varied from 0 to 3. The experimenter told the subjects the two explicit
distances that had been displayed on the map and the distance from Freeburg to
Polk (50 miles) to aid them in making their estimates.

Results and Discussic

For each subject, the mean estimated distance was computed for all pairs with
a given distance and a given amount of clutter. Since pairs that were 25 miles apart . 

_ _. . . 5.. ‘. _..~._;.n= ~~~~~~~~~~~~~ —_ 
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did not vary in clutter, they were eliminated from further analysis. An initial
analysis of variance that treated subject group, distance, and clutter as factors
indicated no differences between the two instructional groups, F(1,20) < 1. There-
fore, the data from the two groups were combined for subsequent analysis. These
data are presented in Fig. 2. Each line represents the mean estimates, in miles,
between the city pairs separated by the actual distance shown. To equalize the
number of observations contributing to each point, the data for clutter values 2 and
3 were combined.

Actual separation distence (miles)

150
150 -

125 -

~~~ 1oo -

I

25 -

~~~~— I I .
0 1 2-3

Number of intervening points

Fig. 2—Mean estimates of route distances from memory in Experiment 1

_ _  
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For each true intercity distance, subjects’ mean distance estimates increased as
the number of intervening points on the connecting route increased. An analysis
of variance performed on the data for the 75-, 125-, and 150-mile pairs revealed
reliable differences due to distance, F(2,42) = 28.06, p < .001, and clutter, F (2,42)
= 36.18, p < .001. Post-hoc t-tests (Winer 1962) showed the differences among each
pair of adjacent points, except for the first two points on the 75-mile line, to be
reliable (p < .01). Estimates for the 50-mile pairs increased reliably with clutter,
t (21) = 2.40, p < .02, while the difference in estimates for the 100-mile pairs was
marginally reliable, t(21) = 1.39, p < .10 (one-tailed tests).

These data clearly demonstrate an effect of clutter on subjects’ distance esti-
mates. For all tested distances, estimates increased as the number of intervening
points on the route increased. The fact that subjects had learned city locations
imprecisely indicates the robustness of the clutter effect. However, it might be
argued that if subjects attended carefully to city locations, the influence of clutter
would be attenuated or would disappear. To test this possibility, subjects in Experi-
ment 2 were required to learn the exact locations of the cities on the map. They then
estimated intercity distances in a procedure similar to that of Experiment 1.

EXPERIMENT 2

A new map was constructed for Experiment 2. This map displayed a road
network similar to the one used in Experiment 1, but the cities were laid out in such
a way as to provide a factorial combination of route distance and clutter. Each
distance-clutter combination comprised four city pairs. The cities in each pair lay
along a route that required no turns , so all distance estimates were made along a
straight line. In addition , all judged routes were in an east-west direction, repre-
sented by horizontal lines on the map. This latter control eliminated the possibility
of differential bias in distance judgments due to the orientation of the route on the
map (Hartley, 1977).

Method

Subjects. Six Rand employees participated in the experiment. All had at least
a B.A. degree.

Design. A 4 x 3 within.subjects factorial design was used. Intercity distance
was either 100, 200, or 300 miles, and each route had either 0, 1,2, or 3 intervening
cities. There were four city pairs in each of the 12 experimental conditions.

Procedure. Subjects were tested individually. On each of a series of study-
recall trials, subjects first viewed the map for 2 minutes. The map was printed on
a piece of white paper that the subjects held in front of them at a comfortable
viewing distance. Subjects were instructed to learn the exact location of all cities
on the map so that they could later place them correctly on the road grid. Although
scale information was shown on the map (i.e., the distance between two of the cities
was marked as 75 miles), subjects were not explicitly instructed to learn intercity
distances. After each study trial , subjects were given a map that contained the road
grid but no cities. They then placed and labeled the cities on the map as accurately
as they could. The experimenter evaluated the reconstructed map and provided 

~~~~~~~~~~~~~~~~~~~~~~



— 
. _.___. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— 
. ____ .

7

feedback on errors the subjects had made. The study-recall procedure was repeated
until the subjects had accurately reconstructed the map on two consecutive trials.

Subjects were then asked to estimate distances for the 48 city pairs. The experi.
menter instructed each subject to imagine the route between the cities of a test pair
and estimate its length , using the standard 75-mile modulus shown on the map. The
city pairs were present ed verbally , and each subject received a different random

- 
- order of the test items.

Results and Discussion

For each subject , the mean distance estimate was computed for each of the 12
experimental conditions. Figure 3 shows the mean estimated distances across sub-
ject s for intercity routes of 100, 200, and 300 miles. On all routes , the estimated
distance increased with increasin g numbers of intervening points , F(3 ,60) = 2.91,
p< .05. In addition , the differences in estimates due to distance was reliab le, F (2,60)
= 58.24, p < .001. The effects of clutter were the same regardless of the distance
to be estimated: The interaction between the distance and clutter variables was not
significant (F = .40).

Tests for a linear trend due to the clutter variable indicated that the linear
component accounted for 97 percent of the variance. This linear trend was signifi-
cant , F (1,60) = 8.52, p< .01. The best-fitting linear function was calculated for each
distance function by the method of least squares. The lines representi ng these
functions are shown in Fig. 3. The dotted lines surroundin g each function indicate
the 95 percent confidence interval for the regression line .

The perceived distance of an interval again increased linearly with the number
of intervening points. These effects of clutter on distance estimates replicate the
well-known results of perceptual studies of the filled-space illusion (Gaudreau ,
Lavoie, & Delorine, 1963; Spitz , Goett ler , & Diveley, 1970; Pre ssey, 1974). In addi-
tion, Spiegel (1937) found that the size of the illusion increased with the amount
of clutter in the judged area . These results are also consistent with the reaction .
time data on scanning memorized maps of Kosslyn et al. (1978), who found that
reaction time to scan across a route increased linearl y with the number of interven-
ing objects , and that this clutter effect was indep endent of the scanned distance.

The similarity between the present results and those obtained from perceptual
and image-scanning experiments suggests that the experimental subjects encoded
a visual image of the map and used that image to estimate distance s. And indeed,
all subjects reported using an image of the map to perform the estimation task.
Since these images presumably preserved the metri c distance informat ion of the
original map, subjects could estimate distances in the same way they would if they
actually viewed the map during the task. To estimate a distance between two cities
from memory, subjects presumabl y mentally located that port ion of the map repre-
sentation that contained the two cities. They then “scanned” the route between the
two cities, using the standard 75-mile length as a modulus against which to compare
the distance.

In Experiment 2, subjects did not perform the distance estimation task until
they had precisely learned the locations of the cities on the map. Since these
locations were accurate when originally learned , it is reasonable to assume that the
memory distortions due to clutter were not introduced in the storage process.
Rather , the distortions app ear to have been produced at retrieval time , when
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Fig. 3—Mean estimates of route distances from memory in Experiment 2

subjects performed their distance judgments. If this is the case, then subjects should
show the same distortions of judgment even when using a completely veridical
representation of the map. Furthermore, if subjects use a quasi-pictorial image of
the map to produce their estimates from memory, the same distortions should be
obtained when the task is purely perceptual. Earlier psychophysical studies of
magnitude estimation obtained this same result, using simple line segments as
stimuli.

EXPERIMENT 3
In Experiment 3, we attempted to replicate the results of Experiment 2 on a

perceptual task, using the same materials and experimental context.
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Another purpose of Experiment 3 was to compare the psychophysical functions
relating route length and judged length obtained on the memory and perception
tasks. Numerous psychophysical studies of line length and distance estimation
have demonstrated that the relation between psychological magnitude (L’) and
physical magnitude (L) can be described by a power function of the form

L’=kL~, (1)

where n is a parameter that depends on the judgment continuum and k is a scale
factor that depends on the unit of measurement (Stevens, 1975). In studies of
distance estimation, the exponent n of this power function has typically been found
to be close to 1.0 (Gibson & Bergman, 1954; Gibson, Bergman, & Purdy, 1955),
although it can vary from .8 to 1.2, depending on the viewing angle of the target
destination, the environment in which the estimates are made, and other variables
(Kunnapas, 1960; Teghtsoonian & Teghtsoonian, 1969; Galanter & Galanter, 1973).
However, in studies of perceived line length , the exponent of the power function
is typically very close to 1.0 and is less variable (Baird, 1970; Stevens, 1975; Kerst
& Howard, 1978).

When subjects use memory rather than a physical stimulus to estimate lengths,
this same power function adequately describes the relationship between true
length and judged length (Kerst & Howard, 1978; Moyer et al., 1978). That is,
subjects seem to make an “internal psychophysical judgment” on their memory
representation when asked to estimate lengths of remembered stimuli (Moyer,
1973). In Experiment 2, subjects were required to learn the exact location of the
cities before they performed the distance-estimation task. If subjects’ memory
representations of the map preserved the spatial properties of the real map, and
if the processes used to estimate distances perceptually and in memory are identi-
cal, then the exponents for the psychophysical functions in Experiments 2 and 3
should be identical.

Method

Materials. The map used in Experiment 2 was modified slightly for Expen.
ment 3. Several roads and cities were added in such a way that city pairs 400 miles
apart were shown. The routes connecting these cities contained either 0, 1, 2, or 3
intervening cities. The roads, cities, and routes used as test items in Experiment
2 were unaffected by this modification.

Subjects. Eight UCLA undergraduates participated in the experiment for
course credit.

Procedure. All subjects were tested together in a single session. They were
told that the experiment investigated speed and accuracy of map reading. Each
subject was given a copy of the map and a sheet of paper containing a list of the
64 city pairs to be estimated. The items comprised 16 conditions: 4 true distances
(100, 200, 300, 400 miles) x 4 values of clutter (0, 1, 2, 3). The city pairs were
randomized, with the constraint that no two items from the same condition ap-
peared consecutively. Subjects were told that for each item, they should find the
pair of cities on the map and then estimate and write down the distance between
them, using the 75-mile distance shown between two of the cities as a standard.
Subjects were not allowed to use any mechanical aids to perform the estimates.
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After subjects completed the task, they completed a questionnaire about the strate-
gies they used to genera te their estimates.

Results and Discussion

The data were analyzed as in Experiment 2. Figure 4 shows the mean estimates
for the city pairs asa function of both true distance and number of intervening
cities. Both true distance (F(3,21) = 370 32, p < .001) and clutter (F (3,21) = 4.68,
p < .02) were signficant factors influencing subjects’ distance estimates. There was
no interaction between the two variables (F = .98). Newman-Keuls tests revealed
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that Pie mean estimated distance with three intervening cities was reliably larger
than that with two intervening cities, and that the mean with two intervening cities
was larger than that with one intervening city (p < .01 for both). Furthermore, the
linear component of the variation due to clutter was significant, F(1,84) = 11.26,
p < .01, and this component accounted for 80 percent of the variance due to the
clutter variable. Figure 4 shows the best-fitting regression lines for subjects’ esti-
mates and the 95 percent confidence intervals for these regression lines. Compari-
son of Fig. 4 with Fig. 3 reveals that, in general, subjects estimating distances

• perceptually showed less variation than subjects performing estimates from mem-
ory.

The psychophysical power functions relating true to estimated distance were
• computed for the data from Experiments 2 and 3. First, the geometric means of the

magnitude estimates for city pairs in each condition were computed. Then separate
power functions were fit to the group means for each value of clutter by the method
of least squares. These data are displayed in Fig. 5, using log-log coordinates. When
the data are plotted in this manner, the slope of the line connecting each set of
points provides the exponent for the psychophysical power function. For both
memory data and perception data, power functions provided a good fit to the data
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(r = .99 or 1.0 for all eight sets of data). Furthermore, for city pairs with two or
three intervening cities, the exponents for the memory and perception experiments
were identical. For the other two values of clutter, the exponents for the perception
condition were slightly larger than those for the memory condition. All exponents
were within the range of values observed in earlier studies of magnitude estimation
of length (Baird, 1970).

When subjects estimated distances between cities while viewing the map, the
presence of intervening cities on the route increased the estimated distance. This
result replicates, in a novel context, the finding from earlier studies that filled
spaces are perceived to be larger than unfilled spaces. This clutter effect was also

• obtained when subjects estimated distances in memory. Although the magnitude
• of the clutter effects differed between the memory and perception thQkQ, the qualita-

tive correspondence between these distortion effects suggests that the estimation
processes in perception and memory and the representation on which the processes
operate are similar in the two conditions. Further, with the clutter effects removed
from consideration, the close fit of psychophysical power functions to both the
memory and perception data also indicates the similarity between these estimation
processes. In particular, subjects seem to encode the map in memory in an image
that preserves the spatial relations of the real map. When asked to estimate dis-
tances between cities, subjects scan a visual image of the map in the same way that
they scan the real map. Thus, decision processes in both perception and memory
conditions appear to be perceptual in nature. This both explains the isomorphism
between the memory and perception data and matches subjects’ reports of the
strategies they used to perform the tasks.

Previous studies have likewise demonstrated that power functions can ade-
quately fit memory-based magnitude-estimation data, including line-length and
distance-estimation data (Moyer et al., 1978; Kerst & Howard, 1978). In these
studies, the exponent of the power function for the memory task was typically
smaller than the corresponding exponent of the perceptual function. Kerst and
Howard therefore proposed a “re-perceptual” hypothesis for describing the mech-
anism by which magnitude estimates are made from memory. They hypothesized
that when a subject perceives and encodes a physical stimulus in memory, the
encoded size of that stimulus (I,) is a power function of the actual physical magni-
tude L L~ = kL~. When subjects judge the magnitude of the stimulus in memory,
they “re-perceive” the visual image encoding that stimulus—a second transforma-
tion operates on the stored stimulus to produce the subjective size estimate. Thus,
for estimates made from memory, the estimated size (L,~) is a power function of the
stored size: L = k’L . The two transformations are assumed to be identical, so
that n = n’, and the exponent for the memorial power function should be the square
of the exponent for the perceptual power function: Lm = k’L = k’(kL”?’ =

k’k~ ~~ = KL~
5. This relationship should hold whenever the subject freely encodes

a perceptual impression of the stimulus without feedback on the accuracy of the
judgments. Since n is frequently less than 1.0, the exponent for the memory func-

• tion, n’, will be smaller than that for the perceptual function.
In Experiment 2, however, subjects were required to learn the map precisely.

Before performing distance estimates from memory, subjects had to be able to
reproduce the exact location of all cities on the map. Unlike Kerst and Howard’ s
subjects, the subjects in Experiment 2 presumably possessed a veridical representa-
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- j tion of the map in memory. Thus, the image on which the memorial estimate s were
based should have been identical to the physical map. If this were the case, then
the exponent from the power function obtained in the memory and perception
conditions should have been identical. This was, in fact, the case for two of the four
values of clutter used in Experiment 2.

Experiments 1 through 3 demonstrated the effect of clutter on distance esti-
• mates with artificial laboratory materials. While the clutter effect occurred even
• when subjects were viewing the map, the obtained differences among clutter condi-

tions were not large. These results leave open the question of whether the clutter
effect can be demonstrated using pre-experimental geographic knowledge and in

• the presence of other variables. Experiment 4 investigated whether or not the
• . illusion could be replicated using subjects’ prior knowledge of US. geography.

EXPERIMENT 4

Method

Subjects . Eighteen subjects participated in the experiment. Some were volun-
teers from the Rand staff, and some were UCLA undergraduates who participated
for course credit. All subjects were at least of college age.

Materials. Two maps of the United States were used in the experiment. One
map displayed only the national borders; the other displayed state outlines as well.
Both maps displayed the names and locations of the 45 most populous cities in the
United States. These cities all had a population of at least 300,000 in the 1970
census.

From this set, 64 city pairs were constructed. The city pairs were selected
according to airline distance between the cities and the number of cities lying along
the route connecting them. The intercity distances were either 400, 700, 1000, or
1400 miles. While few actual distances were exactly one of these values, no distance
deviated by more than 10 percent from one of them. There could be either 0, 1, 2,
or 3 intervening cities along a route. A city was defined to be “on the route” between
two other cities if it was within 50 miles of the direct path connecting the two cities.
These two variables were combined factorially so that there were four city pairs
in each of the 16 conditions. The mean route distance for the four city pairs in a
given condition (e.g., distance = 400, clutter = 0) did not deviate by more than 10
miles from the mean for any other city pair with the same sepatation distance but
in a different clutter condition (e.g., distance = 400, clutter = 1).

Design. A 2 x 4 x 4 within-subject design was used. Subjects performed
distance estimates in two task conditions: from memory and while viewing the map.
Each route to be estimated was either 400, 700, 1000, or 1400 miles in length and
contained 0, 1, 2, or 3 intervening cities.

Procedure. Subjects were tested in groups. They worked through booklets
containing the maps and problems, the first page of which showed an outline map
of the United States with state boundaries and, below the map, a numbered al-
phabetical list of the 45 cities. Subjects were informed that the experiment investi-
gated knowledge of US. geography. They were instructed to place each city on the
map with a pencil and label it with its number. Following the number , they were

~~~~A
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to write a number between 1 and 10 indicating their familiarity with the city. If
they knew the exact location of the city and had visited it many times, they would
write 10; if they had great uncertainty about the location of the city, had never

• visited it, and knew nothing about it, they would write 1.
Subjects then spent 2 minutes studying the map showing the state outlines and

city locations to familiarize themselves with cities about which they had been
uncertain. Following this brief study period, the map was removed and subjects
worked through the list of city pairs. They were instructed to estimate the airline• distance between the cities of each pair by imagining them on a map of the United• States. They were given three distances to use as standards: San Francisco-Los
Angeles = 350 miles; Sari Francisco-New York = 2,571 miles; and Miami-Seattle
= 2,734 miles. A single random order of items was used for all subjects.

The sheet on which the estimates were written was then removed , and subjects
were given a map showing the cities but not the state borders. They repeated the
estimation task, with the same set of items, while viewing the map and the cities.
Subjects’ previo us estimates were not available to them during this task.

Results and Discussion

Subjects’ placements of cities on the map were scored to determine the accuracy
of their knowledge of locations. Three subjects were replaced because of inad equate

• knowledge. The other subjects all placed the cities correctly to within 50 miles of
their true locations.

The distance estimate s were analyzed separately for the memory and percep-
tion tasks. The resul ting data are shown in Fig. 6. The straight lines were fit to the
data using the method of least squares.

For both memory and perception tasks , mean estimates increa sed as the dis-
tance between cities increased (F (3,272) = 118.78, p < .01 for memory; F(3,272) =
840.69, p < .01 for percep tion). Distance estimates also increa sed with increasing
numbers of intervening cities for both tasks (F(3 ,272) = 3.34, p < for memory;
F (3,272) = 10.01, p < .01 for percepti on). The interaction between these two vari-
ables was not significant in either analysis. For both the perception and memory
data , Newman-Ke uls tests showed the overall mean for city pairs with three inter-
vening points to be reliably larger than that for pairs with two intervening points,
and the mean for pairs with one intervening point to be reliably larger than that
for pairs with no intervening points (p < .05).

A multiple-regressi on analysis was performed to test for the influence of other
variables on subjects’ distance estimates. The analysis was performed separately
for the memory and percepti on tasks. For each analysis , the dependent variable
was the mean distance estimate , across subjects , for the route between each of the
64 city pairs. Thr ee variables in addition to tru e distance and clutter were entered
into the regre ssion equati on. Two of these variables were measures of the familiari-

• ty of the judged route. Evidence from prior studies suggests that distance estimates
are systematically influenced by subject s’ familiarity with the endpoints and paths• of the judged routes (Golledge , Briggs, & Demko, 1969; Stea, 1969). Ther efore, for
each city pair , the mean familiarity ra ting of the two cities was computed across
subject s. This value served as one of the variables (Familiarity 1) in the regression.
The second varia ble (Familiarity 2) was determined by computi ng the mean

L ~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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familiarity rating for the endpoints and all intervening cities along the jud ged
route.

The final variable in the regression analysis represented a third potential
• source of clutter . When estimating the distance between two cities, subjects may

be influenced by the number of states along the route. That is, two cities separated
by many states might be perceived as more distant than two cities separated by
fewer states, all other factors being equal. Therefore , for each city pair , the number

• of states traversed on the connectin g route was included as a variable in the
regression.

The results of the analysis are summarized in Table 1, which lists the percent
- • of variance accounted for by each variable in the regression. To determine the

• subset for which the regression coefficient was reliably different from zero , F ratios
were computed for each variable. For the memory data , distance, clutter, and the
number of traversed states contributed significantly to the explanation of the vari-
ance, while neither of the familia rity variables was significant. For the perception

• data, distance and clutter were significant factors , while the other three variables
were not. This result further confirms the finding that clutter increases perceived
distance. In addition , it suggests that several types of intervenin g infor mation on
a route can produce the clutter illusion. When distances were computed from
memory, the states along the judg ed path influenced subjects ’ magnitude estimates.
This source of clutter is intuitivel y reasonable in view of the fact that knowledge
of city locations is at least partly constrained by the location of the states that
contain those cities (Stevens , 1978). Thus, it seems likely that in judging intercity
distances, a subject would access knowledge of the states traversed along the route.
However , when subjects performed the estimates while looking at a map without
state boundaries , such knowledge was not required to perform the estimation task ;
hence the states had no effect on perceptual estimates.

Table 1

• RESUL TS OF ThE MULTIPLE-REGRESSION ANALYSIS
IN EXPERIMENT 4

— Memory Task Perception Task

Change in Change in

Variable R 2 R 2 R 2 R 2

1. Distance .742 .742k .877 877a

2. Traversed states .771 .O29~ .889 .012

3. Intervening cities .797 .O28~ .920
4. Familiarity 2 .815 .018 .921 .001

5. Familiarity 1 .816 .001 .921 .000

ap < .05.

_ _ _ _ _ _- ~~
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IlL DISCUSSION

The results from the four experiments of this study indicate that the presence
• of intervening points along a route increases subjects’ estimates of the length of

that route. This clutter illusion was present both in experiments using artificial
materials and in those using materials with which suL~ecta had substantial pre-
experimen ~~ knowledge. Furthermore , the illusion occurred whether the estima-
tion task was performed perceptually or from memory .

Shepard and his associates (e.g., Shepard & Podgorny, 1978; Shepard , 1978)
- 

- - have argued that similarities between results obtained on perceptual and memorial
tasks indicate that subjects are using the same computations in both tasks. In the
present experiments , subjects estimating distances from memory seem to be using
a representation of the a map that , like the map itself, preserves the metric spatial
relationships among cities. Such a memory representation may be activated as an
image that can be scanned , just as an external map can be perceptually scanned.
This conclusion has been supported by the findings in other studies that time to
estimate distances in memory increases linearly with distance (Baum & Jomdes,
1977; Hartley, 1977) and that time to scan across an image increases with distance
and clutter (Kosslyn, 1978; Kosslyn et al., 1978).

The psychophysical data also indicate the similarity between perceptual and
memorial processes. When clutter was held constant, both memorial and perceptual
estimates of distance were power functions of their corresponding physical values.
Thus, judgments of distance performed from memory demonstrated properties
similar to those of judgment s typically obtained with visual and other sensory
stimuli. Furthermore , there was a close correspondence between the exponents of
the best-fitting power functions for memorial and perceptual data. In both cases, the
value of the best-fitting exponents indicated that subjects overestimated short dis-
tances and underestimated long distances.

The following discussion considers the process by which a subject actually
arrives at an estimate of the distance between two cities. It is assumed that for both
percept ual and memorial judgments , the subject scans a perceptual image of the
route from the starting point to the destination , traversing the set of intervening
cities along the way. By what mechanism is this visual scan converted into a
judgment of magnitude?

A framework called an analog timing model is used here to explain subjects ’
performance on this task . Assume that when the subject scans along a route, the
scan process activates an internal clock , or timer. At the end of the scan , the clock
is stopped; the clock tune indicates the elapsed scan time and , indirectly, the ac-
cumulated distance. The time can then be compared to the scan time for the

• standard modulus to convert the time estimate into a mileage estimate. That is, the
scan time of the modulus and its stated mileage provide a conversion factor for
translating the scan time for a test item into miles.

The results from several studies of time perception support the plausibility of
the timing model for distance estimation. When subjects judg e the duration of a

• time interval , their estimates are greater when stimuli occur between the bounding
markers of the interval than when the interval is unfilled (Hall & Jastrow, 1886;
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Grimm, 1934; Roeloefs & Zeeman , 1951; Buffard i , 1971; Thomas & Brown, 1974;
Thomas & Weaver, 1975; Adams, 1977). The increase in such estimates is linear
with the number of intervening stimuli (Buffardi , 1971) and is independent of the
actual duration of the interval (Thomas & Brown, 1974). Finally, as Fig. 3 indicates ,
subjects similarly tend to overestimate short unfilled distances and underestimate
long unfilled distances (Woodrow, 1934; Thomas & Brown, 1974). Eisler (1976), in
a review of 100 years of subjective duration experiments , reported that the expo-
nent for the psychophysic al function for judged duration averaged approximately
.9. This value corresponds closely to the exponents estimated for the data from

• - Experiments 2 and 3 (see Fig. 5). Since the data from the distance -estimation tasks
• correspon d so closely to the data from these time-estimation tasks , it is plausible

that the same process underlies both judg ments.
Six detailed models of how estimates are performed are considered below. The

models embG’y different assumptions about the scanning process, but all assume
the general timing model outlined above. Parameter estimates for the models were
obtained and the models were comparatively evaluated by fitting them to the data
from Experiments 2 and 3, using standard regression methods. The use of artificial
materials in these experiments controlled for potential differences in degree of
learning, familiarity, and extra .experimenta l knowledge. In contrast, the data from
Experiment 4 were subject to all of these potentially spurious influences. In all
cat es, linear regression methods were used for param eter estimation. For non-
linear models, exponent values were estimated by convergence, using successive
iteration on linear regr ession analyses.

Model 1: Linear Scanning Model. Model 1 is the simplest formulation of
the timing model. It assumes that a subject estimating the length of a route initiates
the internal timer , then scans along the route (passing through the intervening
points) until the termination point is reached. At that point , the timer is deactivated
and the cumulative time is converted into miles. The scan time along an empty line
is assumed to be a linear functi on of the length of the route . However , when the
scan is performed on a cluttered route, each intervening point requires the subject
to stop the visual scan, retrieve the name of the city, and compare it with the name
of the destination point. If the names do not match, the scan continues to the next
city. This processing requires additional time, thus increasing the overall scan time
and hence the resulting distanc e estimat e. The scanning process and the operations
required to test intervening points are assumed to be independent , so their contri-
butions to the overall decision time are additive. The judged distance of a route (L’),
then, can be expressed as the linear combination of the true distance (L) and the
number of intervening points (C):

L’ = b0 + b1L + b2 C. (2)

This model assumes a linear combination of distance and clutter in predicting
distance estimates, with no interaction between the two variables. This assumption

• was supported by the analysis of variance for Experiments 2 and 3, which showed
no significant interaction between these variables. Since the effect of intervening
points is independent of the actual distance to be estimated, the prop orti onal in-
crease in estimates due to clutter decreases with increasing distance. That is, the
longer the distance to be estimated , the smaller the relative effect of intervening
poi nts on the estimate . This seems intuitively reasonable, since, for example, when

-—--- - --~-~~-- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
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the line to be estimated is very long, the effect of a single intervening point would
be expected to be negligible.

This scanning model was fit to the data from Experiments 2 and 3 independent-
ly. For both experiments, the fit of the model was significant: F(2,18) = 51.56, p

• < 001 for Experiment 2; F(2 ,22) = 979.61, p < .001 for Experiment 3. In addition ,
• the contribution of the clutter variable to the explanation of the variance was

significant , F( 1,18) = 4.57, p < .05 for Experiment 2; F(1,22) = 10.33, p < .01 for
Experiment 3. For both experiments , the linear scanning model accounted for a
high percentage of the variance in the distance estimates , as shown in the first row
of Table 2.

For Experiment 2, the parameter b1 was estimated to be .97, and b, was esti-
mated to be 15.36. For Experiment 3, the estimate of b1 was identical to that for
Experiment 2 (.97), while the estimate of b2 was approximately half that for Experi-
ment 2 (7.54). These estimates indicate that the relationshi p between physical

• distance and estimated distance is the same on both the memory and perception
tasks but that intervening points on a route add twice as much to the distance
estimate on the memory task as on the perception task. Considered in the timing

• framework , this result implies that intervening points produce longer pauses in the
linear scan when the scan is performed in memory . A reasonable interpretat ion for
this result is that the time required to retrieve the name of an intervenin g point
is longer when the retrieval occurs in memory than when it is performed perceptu-
ally on the physical map. However , the rate of scanning along the route between
points is the same in both conditions. The non-unitar y estimate of b1 = .97)
indicates that the relationship between perceived length and true length is nearly,
but not completely, veridical.

Each estimate of length requires, in addition to the line scan, the location of the
line to be estimated (either on the map or on the mental image) and a comparison
of the judged line to the standard modulus. These operations, while part of the
overall estimation process, are presumabl y independent of the scan of the test line.
Therefore , the constant b0 should be zero. As the first row of Table 2 shows, b0 was
near zero for both Experiments 2 and 3. These parameter estimates did not differ
reliably from zero (F( 1,18) 0 for Experiment 2, F (1,22) = 0.53 for Experiment

• 3).
This scanning model is consistent with results of other studies in which scan

time or estimated time is the dependent variable . Hartley (1977) found that the
time to estimate the length of a visually presented line increased linearly with line
length. Kosslyn (1978) and Kosslyn et al. (1978) reported that the time to scan across
a visual image was linear in the distance across the image. Furthermore, Lea (1975)
and Kosslyn et a!. argued that there was a time cost associated with processing each
intervening point traversed along an imagined path between two terminal points.
Further, both investigators found no interaction between distance and clutter in
the time to scan across an image . That is, the time to process an interveni ng point
was independent of the distance to be scanned across the image. Similarly, esti-
mates of time duration are typically a linear function of true duration (Triesman,
1963; Craig, 1973; Thomas & Brown, 1974). Furthermore, the parameter estimate
relating judged length to true length obtained here (b1 = .97) corresponds closely
to the estimates for the parameter relating judged duration to true duration (bL =
.98 (Triesman, 1963); b 1 = 1.0 (Craig, 1973)).
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Model 2: Interaction ModeL While the interaction between length and
clutter was not significant in Experiments 2 and 3, the data from these experiments
do not rule out the possibility of a small interaction. The best-fitting lines in Figs.
3 and 4 are visibly non-parallel, indicating the presence of a small interaction

• I between the two variables. Model 2 incorporates an interaction term in the linear
prediction equation for estimated distance, as follows:

- L = b 0 + b 1L+b ,C + b3LC .
-
• 

Since this model has one more parameter than the linear scanning model (Model
• 

. 1), it should , in principle, fit the data better than Model 1. However , this is not the
case in the second row of Table 2. Model 1 accounts for as much of the experimental
variance as the interaction model in both Experiments 2 and 3. The best estimates
of b3 for the data from Experiments 2 and 3 were nearly zero (.09 and — .02,
respectively). Accordingly, the incremental contribution of the interaction term (b.)
to prediction of the variance was not significant (F < 1 for both Experiments 2 and
3). Furthermore, for Experiment 2, the estimate of b0 was much larger than the
predicted value of zero , and that of b2 (the clutter multiplier) was negative. There-
fore , the linear scanning model appears to be preferable to the interaction model.

Model 3: Non-linear Scanning ModeL The typical function relating true
distance to estimated distance is a power function of the form given in Eq. (1).
Suppose that the scanning model is an accurate description of the estimation pro-
cess, but that the estimated scan time along the route, independent of clutter, is a
power function of the actual distance or scan time. The scanning model given in Eq.
(2) could thus be modified as follows:

= b0 + b1L~ i- b,C.  (3)

This model is a more general formulation of Model 1. (Equation (3) reduces to
Model ! when 11 = 1.) When this model was fit to the data from both Experiments
2 and 3, the best estimate of n was 1.10. However , as the third row of Table 2
indicates, allowing n to be a free parameter does not significantly improve the lit
to the data . In addition , the estimates of b0 differ greatl y from the predicted value
of zero (F(1,22) = 7.78, p < .02, for Experiment 3). Therefore , there is no reason
to reject the more parsimonious linear model.

The next three models assume that the subject treats a cluttered route as a set
of individual routes. When visually scanning a route or an image of a route , the
subject encounters each city that intervenes between the starting point and the
destination point. Models 4 through 6 assume that subjects estimate each segment
defined by the intervening points separately . The overall estimate for the route is
then the sum of the estimated subroutes. This class of models may be described by
the equation

C+i

L’ = b 0 + 1 ~ 1 l’s ,

where l’~ is the estimated length of subroute 1.
Model 4: LInear Chunking Model (1). Model 4 assumes that a subject

estimates each subroute i with an error e that is prop ortional to the true magnitude
of i (= I). Thus , an estimated route L’ may be expressed as
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C+i -
•

E
L’ = b 0 + ~ =~1 l~+el~= b 0 + ( 1+e)L .

The fit of this model to the data is given in the fourth row of Table 2. It may
be noted that this model is equivalent to Model 1 with b1 = 0. The fit of this model

• to the data is nearly as good as that of Model 1. However , in Model 1, b~ was not
equal to zero and contributed significantly to the explanation of the experimental
variance. That is, Model 1 provides a reliably better fit to the data than Model 4.
Further , the estimated values of b0 differed greatly from zero (F(1 ,23) = 6.55, p

- • < .05 for Experiment 3). Therefore , Model 4 may be rejected as a competitor to the
linear scanning model.

Model 5: Linear Chunking Model (2). Model 5 is similar to Model 4 in that
it assumes that the estimate of each subroute has an associated error e. In this
model, however , e is assumed to be independent of I~. That is, the error in each
estimate is constant for subr outes of all lengths. This relationship may be expressed
as

c+’

L’ = b 0 + I . 1  l i + e = b o + L + ( C + 1 ) e .
• This model is equivalent to Model 1, with the constraint that the parameter

associated with L is equal to 1. This model provides a slightly worse fit to the data
than Model 1, as shown in the fifth row of Table 2. In addition, under the constraint
that the parameter associated with L must be 1 (compared to the estimate of .97
for Model 1), b0 became substantially less than zero (F(1,23) = 4.27, p < .05 for
Experiment 3). Thus, this model is also inferior to Model 1.

Model 6: Non-linear Chunk ing ModeL Model 6 assumes that the estimate
of each subroute I’ is a power functi on of the true distance I. Thus, this model may
be expressed as

c+
L’ = b0 + kJ~~. 

S

Model 6, like the linear scanning model, has three parameters to be estimated.
(Note , however , that when n is near or equal to 1, Model 6 is equivalent to Model
4.) As shown in Table 2, the two models provide comparable fits to the data. The
estimated values for the exponent n in Model 6 were .84 for the memory experiment
(Experiment 2) and .95 for the perception experiment (Experiment 3). These values
are within the range normally obtained in magnitude -estimation experiments
(Baird , 1970), but the values of b0 are further from the predicted value of zero than
the b0’s estimated for Model 1. However , it has been assumed that the visual scan

• along the line to be estimated is identical for both perception and memory tasks.
This means that the parame ter describing the relationship between distance and

• estimated distance should be identical (disregarding for the moment the effects of
clutter). So, for example , the parameter estimate for the route distance factor in

• Model 1 (l)~) is the same for both memory and perception data (.97). If Model 6 is
evaluated under the same constraint, then the exponent n in Eq. (4) should be the
same as the data from Experiments 2 and 3. Accordingly, the fit of the model to the
data was determined utilizing a single value for n. When n = .84 (the value pro-
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viding the best fit in Experiment 2) was used, the model accounted for 96.7 percent
of the variance (instead of 98.5 percent) in the Experiment 3 data . Similarly, when
ii = .95 (the estimate obtained from Experiment 3) was used, the model accounted

• for 83.4 percent of the variance in the Experiment 2 data . Thus, when n is con-
strained to be a single value , Model 6 fits the data slightly worse than Model 1.

S This non-linear chunking model represents a special case of a class of chunking
• I models postulated by Thomas and Brown (1974) to account for subjects’ estimates

of filled temporal intervals. Thomas and Brown also postulated that subjects esti-
mate each time interval separately and sum the individual intervals to provide an
overall estimate. They showed that whenever the subinterva l estimate is a concave

• - increasing function of the true value, the size of the produced illusion increases
S with n and is larger for regular than for irregular intervals. Model 6 is concave

when n < 1, a condition satisfied by the parameter estimates obtained in fitting the
model to the data.

SYMBOUC ENCODING MODELS

All six of the distance-estimation models considered above assume that memory
estimates are computed from a stored imaginal representation of the map and that
the memory representation is a spatial analog of the physical map, preserving the
topographic properties of the cities. An alternative framework for modeling this
task assumes that subjects extract spatial information from the studied map and
represent it in memory in an abstract , prop ositional form (Pylyshyn, 1973). For
example , subjects might store in memory a network of nodes representing city
names and links among the nodes that specify relative direction (north , east, west,
south) and distance information . They then would perform distance estimates by
retrieving the stored value or by sampling from some range of values associated
with the path between two cities. Such “symbolic encoding” models presume that
subjects estimate distances at the time they learn the map, and then merely re-

• trieve those estimates when required to report them.
How might distances be estimated at encoding time under this framework?

Despite the different structural assumptions about representation entailed by the
• imaginal and symbolic models, the process models for the initial estimation process

itself are substantially the same. The subject presumably uses the scale distance
given on the map as a standard against which to measure and then encode the route
distances between cities. If the subject encodes route distances explicitly, then the
three scanning models considered above (Models 1 through 3) would seem to be
unlikely candidates for the estimation process. These models assume that the sub-
ject scans across intervening points to determine the distance between the starting
point and the destination of a route. If subjects did not know at encoding time which
routes would be tested, they would have to estimate the distances between all pair s
of cities. For example , if cities A, B, C, and D lay along a road , subjects would have
to estimate distances for A-B, A-C, A-D, B-C, B-D, and C-D. This procedure seems
unlikely because of the effort required to perform all the estimates, and because
subjects did not know they would ultimatel y be asked to estimate intercity dis-
tances.

A more reasonable alternative is that subjects encoded distances only between
adjacent points (e.g., A—B, B-C, C—D) and then added the individual values when

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~•• • - -—--•~~~~~~~~~~
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estimating a route tha t spanned intervening points (e.g., A-D). The chunking
models (Models 4 through 6) embody these assumptions and could easily be for-
mulated in the encoding framework. As discussed above, the linear chunking
models (Models 4 and 5) do not fit the data as well as the linear image scanning
model (Model 1). The non-linear chunking model (Model 6), however , provides an

S adequate account of the data. If, as the encoding model assumes, subjects store
estimated distances during perception and merely retrieve them to perform
memorial estimates, then the exponent estimated for the non-linear chunking
model must be the same for the memorial (Experiment 2) and the perceptual
(Experiment 3) tasks. As discussed previously, when this constrain t is imposed on
the chunking model, it is inferior to the scanning model.

Three other factors militate against acceptance of this encoding model . First ,
if memorial judgments reflect simple retrieval s of values stored during perception ,
then judgments performed in the two conditions should be nearly identical. In
particular , there is no reason to expect the effect of clutter on distance estimates
to be attenuated in the perception task , as was observed here. Second, although
subjects were free to use any strategy to compute distances , only one of fourteen
subjects in Experiments 2 and 3 reported adding subroute distances to obtain
overall distances between points. Finally, the symbolic encoding model does not
adequately explain the relationship between reaction time and scan distance ob-
tained in earli er studies (Koeslyn, 1978; Koeslyn et al., 1978). Thus, while the
encoding model cannot be categorically rejected, it does not provide the best expla-
nation for the present data.

COMPARATIVE EVALUATION OF ~~TIMATION MODEL S

As demonstrated by the preceding discussion and Table 2, the variances ac-
counted for in fitting all the models to the data from Experiments 2 and 3 are
roughly equivalent. However , when parsimony and the values of the estimated
parameters are taken into account, the linear scanning model (Model 1) and the
non-linear chunking model (Model 6) are the most appealing. On the basis of the
data reported here , neither model can be uneq uivocally favored over the other;
they account for nearly equal proportions of the variance in Experiments 2 and 3.
Table 3 compares the fit of the two models to the data in more detail. This table
shows the predicted values for the uncluttered routes in Experiments 2 and 3 as
computed by the two models, using the best-fitting parameters. (The values of these

• par ameters are given in Table 2.) The fit of Model 6 is given in Table 3 for the values
of the exponent estimate d from each experiment. Table 3 also gives the 95 percent
confidence limits for each of the estimated distances. The predicted estimate s of the
two models vary from 1 percent (for the 100-mile route in Experiment 2) to 20
percent (for the 400-mile route in Experiment 3). For several of the distances , the
95 percent confidence intervals for the models’ predictions do not overlap, while in
other cases the differences in predicted values are negligible. Thus, while the
relative fit of the models to the data is qui te close, the models differ in many of their

• pre dictions for individual test items.
Several other factors should also be considered in comparat ively evaluating

these two models. Model 1 is intuitively app ealing because it is consistent with
earlier magni tude -estimation results. The exponen t of the power function relating
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Table 3

DISTANCE ESTIMATES FOR UNCLUTT ERED RouTEs IN EXPERIMENTS 2 AND 3
PREDICTED BY MODELS 1 AND 6 USING ESTIMATED PARAM ETERS

S Model 6 Model 6
Model 1 Non-Linear (~~unkin g Non-Linear Q~unking

Linear Scanning (n • .84) (a — .95)

Thie Distances , L Mean of Subject.’ 95 percent A~ - 
95 percent 95 percent

(miles) Estimates, L t limits L limit. t limit.
Experiment 2

100 105.33 96.05 ±20.41 95.92 ±21.81 116.86 ±24.41

• 200 181.00 193.05 ±12.30 174.96 ±l3.72~ 210.87 ±15.75a

300 275.00 290.05 ±20.41k 247.62 121 81a,b 302.44 ±2441 b

Experiment 3
• 100 94.00 102.63 ± 8.81 93.12 ±14.75 109.00 ±10.09

200 199.00 199.63 ± 5~535 177.06 ± 926a 203.00 ± 6.34
300 302.00 296.63 ± 5 5 3 a 254.24 ± 9.26’ 294.58 ± 6.34
400 404.00 393.63 ± 8.81k 327.33 ±14.75k 384.62 ±10.09

Note: Within each row, numbers with the same superscript (a orb) indicate non-overlapping
S estimat eL

distance to estimated distance, as predicted by Model 1, is typically 1 or very close
to 1 (Baird , 1970; Stevens, 1975). Further, when subjects scan across a mental image
or visual display, the reaction time is linear with the distance (Baum & Jonides,

• 1977; Hartley, 1977; Koeslyn, 1978; Kosslyn et al., 1978). The best fit to the data that
can be obtained with Model 6, in contrast , uses exponent values of .84 and .95. In
his review of magnitude-estimation studies of length , Baird (1970) found only 2 of
the 29 exponents estimated for the power function to deviate from 1.0 by as much
as .84 does (±.16).

Indirect evidence supporting the scanning model was also obtained from sub-
ject s’ reports of their strateg ies for estimating route distances. All six subjects in
Experiment 2 and seven of the eight subjects in Experiment 3 reported using the
75-mile standard as a reference. That is, they tried to scan across the line to be
estimated and determine its length by multiplying 75 by the number of times the
standard would fit along the test line. All subjects reported being aware of the S

intervening cities during this process, even though the cities were not used in
making the measurement. Only one subject , from Experiment 3, reported using the
intervening cities in the estimation process. This subject attempted to compute the
distance between each pair of adjacent cities on the route, and then added these
distances to get the overall route distance. This is the process suggested by the
non-linear chunking model (Model 6).

On the other hand , Model 6 has the advantage that it predicts different effects
of n intervening cities, depending upon the distribution of the cities along the route.
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In particular, it predicts that the increase in the estimated distance should be larger
S when the cities are distributed regularly along the route than when they are

distributed irregularly (Thomas & Brown, 1974). In contrast, the linear scanning
model predicts no difference between regular and irregular distributions. While the
superiority of the illusion for regular distributions has been obtained for interval-
duration estimates (Grimm, 1934), its reliability is equivocal (cf. Thomas & Brown,
1974). In the present experiments, the distribution of intervening points along the
routes was not varied systematically. However , it is possible to compare subjects’
mean estimates for a given distance and value of clutter in those cases where the
items comprised both equally and unequally segmented routes. In Experiment 2,
eight of the possible nine conditions (clutter = 1, 2, or 3; distance = 100, 200, or
300 miles) contained items of both types. In only two of the eight cases were the
mean estimated distances for equally segmented routes greater than those for

• unequally segmented routes. In Experiment 3, a similar comparison was possible
for six of the experimental conditions. Here, mean estimates of equally segmented S

routes exceeded those of unequally divided routes in only three of the six compari-
sons. Therefore, the superiority of the illusion for regular distributions was not
confirmed in the present experiments. Nevertheless, it seems likely that the clutter
effect could be attenuated with extremely irregular distributions. For example, if
three intervening cities were placed almost on top of one another extremely close
to one of the terminal points on a route , the route would perceptually approximate
an uncluttered route , and the resulting distance estimate might not show the effect
of clutter. In the present experiments, occurrences of irregular clutter were not this
extreme, and the effects of these extreme cases remains to be determined empirical- S

i

ly. Such a determination would seem to be required for a comprehensive elabora-
tion of a cognitive theory of distance estimation .

While all subjects in these experiments seemed to be estimating distances from
memory, using an image of the map, this technique is undoubtedly but one of
several strateg ies that people use. Clearly, in real-world situations , people have the
ability to compute or infer distances symbolically, based on a variety of types of
stored knowledge. When a person learns a map of an unfamiliar area, the ability
to reconstruct an image of that map may deteriora te over long retention intervals.
In such situations , many other factors may influence the estimation process. How-
ever , the present studies indicate a systematic bias that occurs reliably when people
estimate distances by scanning either memorized or physical maps of both familiar
and unfamiliar regions.

These results may have important policy implications for the future design of
maps, particul arly computer-generated graphic displays (e.g., Anderson & Shapiro,
1979). Many maps are difficult to use because they are overcrowded with data. In
fact , Taylor and Hopkin (1975) point to map clutter as the greatest single problem
in map design . it is widely held that clutter intr oduces noise that interferes with
reading and using maps , the present study suggests that clutter also introduces a
systematic bias in particular judgments made using a map. Consequently, in design-

I • ing dynamic , computer-generated maps of the future , researchers should consider
the desirability of presenting geographic displays that supply requested informa-
tion but minimize the amount of attendant , irrelevant data. Such request-d riven
displays could provide the data needed for particular purposes without introducing

S biases that result from the use of cluttered images.

L
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APO San Francisco, CA 96503 Department of the Navy

Orlando , FL 32813
S 1 Office c.~f the Chie f of Naval

Operations
Research , Development , and Studies

Branch (OP—102)
Washington , D .C. 20350

1 Lt. Franck C. Petho, MSC , USNR (Ph.D)
Code L5l
Naval Aerospace Med ical Research

Laboratory
Pensacola , FL 32508

1 Dr. Richard A. Pollak
Academic Computing Center
U .S. Naval Academy
Annapolis , MD 21402

1 Dr. Gary Poock
Operations Research Depa rtment
Naval Pos tgraduate School
Monterey , CA 93940

1 Roger W. Remington , Ph.D
Code L52
Naval Aerospace Medical Research

Laboratory
Pensacola , FL 32508

1 Mr. Arnold Rubenstein
Naval Personnel Support Technology

S - Naval Material Command (08T244)
Room 1044, Crystal Plaza #5
2221 Jefferson Davis Highway
Arlington, VA 20360

1 Dr. Worth Scanland
Chief of Naval Educa t ion and Training
Code N—5
NAS, Pensacola , FL 32508

1 A. A. Sjoholm
Technical Support , Code 201.
Navy Personnel R&D Center
San Diego , CA 92152 

_5 5 _ ~~~~~5~~~~ 5~~~~5 5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~



-~~~~~~ _ U •~~~~~~ . 
5 5 5 5~~~~ 

-

Army Army

1 Dr. Richard Sorensen i. Dr. Milton S. Katz
Navy Personnel R&D Center Individual Training & Skill

• San Diego , CA 92152 Evaluation Technical Area
US Army Research Institute

1 RQ USAREUE & 7th Army 5001 Eisenhower Avenue 
SOffice , DCS/Operations Alexandria, VA 22333

-
• USAAR.EUE Director of CEOS 

APO New York 09403 1 Technical Director
US Army Human Engineering Labs.

I Lt. Cal. Gary Bloedorn Aberdeen Proving Ground , MD 21005
Training Effectiveness Analysis
Division 1 Dr. Harold F. O’Neil, Jr.

• US Army TRADOC Systems Analysis Attn : PERt-OK
Activity Army Research Institute

White Sands Missile Range , NM 88002 5001 Eisenhower Avenue
Alexandria , VA 22333

1 Dr. Ralph Dusek
US Army Research Institute 1 Dr. Robert Sasmor
5001 Eisenhower Avenue US Army Research Institute for

S Alexandria , VA 22333 the Behavioral and Social Scien
5001 Eisenhower Avenue S

1 Commander Alexandria , VA 22333
USAETL
Attention : ETL—GS—P 1 Dr. Joseph Ward
Fort Belvoir, VA 22060 US Army Research Institute

5001. Eisenhower Avenue
1 Dr. Beatrice J. Farr Alexandria, VA 22333

Army Research Institute (PERI.-OK )
5001 Eisenhower Avenue

• Alexandria , VA 22333

1 Col. Frank Hart
• Army Research Institute for the

Behavioral & Social Sciences
5001 Eisenhower Avenue S

Alexandria, VA 22333

1 Dr. Ed Johnson
Army Research Institute
5001 Eisenhower Avenue

- - 

5 Alexandria , VA 22333

1 Dr. Michael Kaplan
US Army Research Inst itu t e S

5001 Eisenhowe r Avenue
Alexandria , VA 22333
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Air Force Marines

1 Air Univer sity Libra ry 1 H. William Creenup
~ I AUL/LSE 76/443 Educ ation Advisor (E03l)
S Maxwell AFB , AL 36112 Education Center , MCDEC

Quantico , VA 22134
1 Dr. Earl A. Alluisi

HQ. AFHRL (AFSC) 1 Special Assistant for Marina
Al Human Resources Lab . Corps Matters
Brooks AFB , TX 78235 

. 
Code lOOM
Office of Naval Research

1 Dr. C. A . Eckstrand (AS) 800 N. Quincy Street
Al Human Resources Lab . Arlington , VA 22217
Wright—Patterson AFB , OH 45433

1 Dr. A. L. SlafkoskyS 
1 Dr. Genevieve Haddad Scientific Advisor (Code RD—I

Program Manager Hq. U.S. Marine Corps .
Life Sciences Directorate Washington , D. C. 20380
Al Office of Scien tific Research
Boiling AIB , DC 20332

1 Dr . Marty Rockway (AFH RL/TT)
Al Human Resources Lab .

S Lowry APE , CO 80230

2 Faculty Development Division
Headquarters Sheppa rd Technical

Training Cente r (ATC )
S Sheppard APE , TX 76311

1 Maj . Ja ck A. Thorpe
USAF
Naval War College
Providence , RI 02846

• 1 Lt. Col. Brian K. Waters
USAP
Air University
Maxwell AIB
Montgomery , AL 36112

_ _ _  • • •~~~~ ~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~ -- S _ s  ~~ S-



S 

-

~~~~~

___-- -

!S1

S 
Coast Guard Othe r DoD 

S

1 Maj . Jack Wallace 1 Mr. Richard Lan ter manHeadqua rters , Mari ne Corps . Psychological Research (G- .P—l /62)~S OTTI 31 U.S.  Coas t Guard HQ. SS 

Arlington Annex Washington , D. C. 20590
S Columbi a Pike at Arlington Ridge Rd .

Arlingt on , VA 20380 12 Defense Technical Information Cen
Cameron Station , Bldg. 5
Alexandria , VA 22314 5

5

Att n : TC 5

1 Dr. Craig I. Fields 
S

Defense Advanced Research Project
Agency

S 1400 Wilson Boulevard S

Ar lington , VA 22 209 -

1 Dr. Dexter Fletcher
Defense Advanced Research Project:

S Agency
1400 Wilson Boulevard
Ar lington , VA 22209

1 Mr. Artnando Mancini -
Headquarters , Defense Mapping

S Agency 5

Building 56
5 I 

Naval ObservatoryF Massachusetts Avenue at 34th St.,?’~Washington, D. C. 20390 —
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Other Gov ’ t Non Gov ’t

1 Military Assistant for Training 1 Dr. John R. Anderson
and Perso nnel Technology Department of Psychology

Office of the Under Secretary of Carnegie Mellon University
Defense f or Research & Engineering Pittsburgh , PA 15213

S Room 3D129 , The Pentagon
Washington, D. C. 20301 1 Dr. John Annett

Department of Psycho logy
1 Dr. Susan Chipman University of Warwi ck

S Basic Skills Program Covent ry CV4 7AL
Nationa l Institute for Education ENGLAND
1200 19th Street , N. W.

• Washi ngton , D . C. 20208 1 Dr. Michael Atwood
Science App lications Inst itute

1 Dr. Josep h L. Lipson 40 Denver Technical Center West
Division of Science Education 7935 B . Prentice Avenue S

Room W—638 Englew ood , CO 80110
Nati onal Science Foundation

• Washington , B. C. 20550 1 1 Psychological Research Uni t
Depar tment of Defense (Army Off ic

5 
5 1 Dr. John Mays Campbell Park Offices

National Institute of Education Canberra ACT 2600
1200 19th Street, N. W. AUSTRALIA

• S Washington, D. C. 20208
1 Dr. Alan Badde ley

1 Dr. Arthur Melmen Medical Research Council
Natio nal Institute of Education Applied Psychology Unit

• 1200 19th Street , N. W. Depa rtmen t of Psychology
Washington , B. C. 20208 Brown University

Provid ence , RI 02912
• 1 Dr. And r ew H . Molna r S

Science Educa tion Development 1 Dr. Patricia Baggett
and Research Department of Psychology

• National Science Foundation University of Denver
S Washington , B. C. 20550 University Park

Denver , CO 80208
1 Dr. Joseph L. Young

S Memory & Cognitive Processes 1 Mr. Avron Barr
• National Science Foundation Department of Computer Science

Washington , B. C . 20550 Stanford University
Stanford , CA 94305

1. Dr. Nicholas A. Bond
- Department of Psychology

Sacramento State College
600 Jay Street
Sacramento , CA 95819

1. Dr. Lyle Bourn e
Department of Psychology

S University of Colorado
Boulder , CO 80302

- •
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Non Coy ’ t Non Coy ’ t

1 Dr. Kenneth Bowlea 1 Dr. Meredith P . CrawfordInstitute for Information Sciences American Psychological AssociationUniversity of California at San Diego 1200 17th Street , N. W.
S La Jolla , CA 92037 Washi ngton , D. C. S

1 Dr. John S. Brown 1 Mr. Ken Cross
XEROX Pa lo Alto Research Center Anacapa Sciences , Inc.33 33 Coyote Road P . O .  Drawe r Q

S I Palo Alto , CA 94304 Santa Barbara , CA 93102

1 Dr. Bruce Buchana n 1 Dr. Hubert DreyfusDepartment of Computer Science Department of PhilosophyS Stanford University University of CaliforniaStanford , CA 94305 Berkeley, CA 94720

1 Dr. C. Victo r Bund erson 1 Maj . I. N. Evoni~tWICAT Inc . Canadian Force s Personnel App liedUniversity Plaza , Suite 10 1107 Avenue Road• 1160 So. State Street Toron to, Ontario S

Orein, UT 84057 CANADA

1 Charles Myers Library 1 Dr. Ed Feigenbaum
Livingstone House Department of Computer Science
Livings tone Road Stanford UniversityStra tford Stanford , CA 94305London E15 2LJ

S ENGLAND 1 Mr. Wallace Feurzeig
Bolt Beranek & Newman , Inc.

1 Dr . William Chase 50 Moulton StreetDepar tment of Psychology Cambridge , MA 02138
Carnegie Mellon University
Pitt sburgh , PA 15213 1 Dr. Victor Fields

S Department of Psychology 1
S 1 Dr. Micheline Chi Montgomery College• Learning R&D Center Rockv ille , MD 20850

University of Pittsburgh
3939 O ’ Hara Street j  Dr. Edwin A. Fleishma n
Pittsburgh , PA 15213 Advanced Research Resources Office

Suite 900
1 Dr. William Clancey 4330 East West Hi ghway

S Department of Computer Science Washington , D. C. 20014
S Stanford University

Stanfo rd , CA 94305 1 Dr. John D. Folley, Jr.
Applied Sciences Associates Inst.

1 Dr. Allan M. Collins Valencia , PA 16059
Bolt Beranek & Newman , Inc . S

50 Moulton Street 1 Dr. John H. Frederiksen
Cambridge , MA 02138 Bolt , Beranek & Newman, Inc.

50 Moulton Street
Cambridge , MA 02138

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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1 Dr. Alinda Friedman i Library
Department of Psychology HumRRO/Western Division
University of Alberta 27857 Berwick Drive

S Edmonton , Alberta Carmel, CA 93921CANADA T6G 239
1 Dr. Earl Hunt

1 Dr. R. Edward Ceiselman Department of Psychology
Department of Psychology University of WashingtonUniversity of California Seattle , WA 98105
Los Angeles, CA 90024

1 Dr. Kay Inaba
1 Dr. Robert Glaser 21116 Vanowen Street-1 . Learning R&D Center Canoga Park , CA 91303

University of Pitt sburgh
3939 O’Hara Street 1 Dr. Lawrence B. Johnson
Pittsburg h , PA 15213 Lawrence Joh nson & Assoc., Inc .

S Suite 502
1 Dr. Marvin Clock 2001 “S” Street , N. W .

Department of Education Washington , D. C. 20009
Stone Hall
Cornell University 1. Dr. Arnold F Kanarick
Ithaca , NY 14853 Honeywell , Inc.

2600 Ridgeway Parkway
1 Dr. Ira Goldstein Minneapolis, ~1N 55413

XEROX Palo Alto Research Center
3333 Coyote Road 1 Dr. Walter Kintsch
Palo Alto, CA 94304 Department of Psychology

University of Colorado
1 Dr. James C. Greeno Boulder , CO 80302

Learning R&D Center
University of Pittsburgh 1 Dr. David Kieras
3939 O’Hara Street Department of Psychology
Pittsburgh , PA 15213 University of Arizona

Tucson , AZ 85721
1 Dr. Barbara Hayes—Roth

The Rand Corporation 1 Dr. Kenneth Klivington
1700 Main Street Alfred P. Sloan FoundationS Santa Monica , CA 90406 630 Fifth Avenue

S New York , NY 10020
1 Dr. Frederick Hayes—Roth S

S The Rand Corporation 1 Dr. Stephen Kosslyn
1700 Main Street Harvard University
Santa Monica , CA 90406 Department of Psychology

33 Kirkland Street
1 Dr. Adrian Hill Cambridge , MA 02138

Vision and Ergonomics Research S
Glascow College of Technology 

~. 
Mr. Marlin Kroger S

Cowcaddens Road 1117 Via Golete
Glascow G4 OBA Palos Verd es Estates , CA 90274
SCOTLAND
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Non Gov’ t Non Gov ’ t

1 Lt. Col. C.R.J. Lafleur 1 Dr. Donald A . Norman
S Personne l Applied Research Department of Psychology C—009

National Defense Hqs . University of California ,
101 Colonel By Drive San Diego
Ottawa La Jo lla , CA 92093
CANADA K1A 0K2

S 

i Dr. Robert Pachella S

1 Dr. Jill Larkin Department of Psychology
S Department of Psychology Human Performance Center

Carnegie Mellon University 330 Packard Road
- Pittsburgh , PA 15213 Ann Arbor , MI 48104 

S

1 Dr. Alan Lesgold 
~ Dr. Seymour Pachella

Learning R&D Center Depar tment of Psychology
- •

S 
University of Pittsburgh Human Performance Center
Pittsburgh, PA 15260 330 Packard Road

Ann Arbor , MI 48104 —

1 Dr. Robert A. Levit
• Manager , Behavioral Sciences 1 Mr. Luigi Petrullo S

The BDM Corpora tion 2431 N. Edgewood Street
7915 Jones Branch Drive Arlington, VA 22207

• 
S McClean , VA 22101

l Dr. Peter Poison S

1 Dr. Robert R. Mackie Department of Psychology
Human Factors Research , Inc. University of Colorado
6780 Cortona Drive Boulder , CO 80302

S Santa Barbara Research Pk.
Goleta, CA 93017 1 Dr. Peter B. Read

Social Science Research Council
1 Dr. Mark Miller 605 Third Avenue

S Systems and Information Sciences New York, New York 10016
Central Research Laboratories

S Texas Instruments , Inc. 
~. 

Dr. Fred Reif
Mail Station 5 SESA~IE
Post Office Box 5936 d o  Physics Department
Dallas, TX 75222 University of California

Berkeley , CA 94720
1 Dr. Richard B. Millward S

• Department of Psychology 
~. 

Dr . Andrew M. Rose
Hunter Laboratories American Institutes for Research

S Brown University 1055 Thomas Jefferson Street , N. W
S Providence, RI 82912 Washington, B. C. 20007

2. Dr. Allen Munro 1. Dr. Ernst Z. Rothkopf
S University of Southern California Bell Laboratories S

Behavioral Technology Laboratories 600 Mountain Avenue
3717 South Hope Street Murray Hill, NJ 07974

S Los Angeles , CA 90007
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S Non Coy ’ t Non Coy ’ t

1 Dr. David Rumeihart 1 Dr. Thomas Sticht
Center for Human Information HumR.RO
Universi ty of California, San Diego 300 N. Washington Street- 

S La Jolla , CA 92093 Alexandria, VA 22314

• 1 Dr. Walter Schneider 1 Dr. David Stone
Department of Psychology ED 236
University of Illinois STJNY, Albany

S Champaign, IL 61820 Albany , NY 12222
1~

1 Dr. Allen Schoenfeld 1 Dr. Patrick SuppesS S 

Department of Mathematics Institute for Mathematical StudiesHamilton College and the Social Sciences
Clinton, NY 13323 Stanford University

Stanford , CA 94305
1 Dr. Robert 3. Seidel

Instructional Technology Group 1 Dr. John Thomas
HumRRO IBM Thomas J. Watson Research Inst.300 N. Washington Street P.O. Box 218

Alexandria, VA 22314 Yorktown Heights, NY 10598
- 5  1 Dr . Robert Smith 1 Dr. Douglas Towne

S Department of Computer Science Behavioral Technology Labs.
Rutgers University University of Southern California
New Brunswick, NJ 08903 3717 South Hope Street

Los Angeles, CA 90007• 1 Dr. Richard Snow
School of Education 1 Dr. 3. Uhlaner

S Stanford University Perceptronics . Inc .
Stanford , CA 94305 6271 Variel Avenue

Woodland Hills, CA 91364
1 Dr. Kathryn T. Spoehr

S 

Department of Psychology 1 Dr. Benton 3. Underwood
Brown U~iiversity Deoartment of Psychology
Providence, RI 02912 Northwestern University

Evanston, IL 60201
1 Dr. Robert Sternberg

-
S Department of Psychology 1 Dr. William B. Whi tten. II

Yale University Department of Psvchoioey
Box h A , Yale Station SUNY . Albany
New Haven, CT 06520 1400 Washington Avenue

Albany , N! 12222
1 Dr. Albert Stevens S

Bolt , Beranek , & Newman , Inc. 1 Dr. Christopher W~Lckens
50 Moulton Street Department of Psychology
Cambridge , MA 02138 University of Illinois

Champaign , IL 61820 
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Non Gov’t

1 Dr. Karl Zinn
Center for Research on Learning
and Teaching

University of Michigan
Ann Arbor , MI 48104

S 
I
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